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Abstract. We discuss the extension of the augmented space formalism to study systems of 
fermions in contact with a heat bath to incorporate non-Markovian evolution of the bath variables. 
The formalism uses the ideas of the memory function approach. We give a simple example to 
show how the non-hlarkoviar nature of the bath effects the spectral response of the electron 
system. 

1. Introduction 

The problem of fermions in contact with time fluctuating random potentials is of particular 
interest to condensed matter physicists. The reason for continued interest in these problems 
lies in the fact that a number of many-body interacting systems can be mapped onto the 
problem of individual fermions interacting with a time fluctuating stochastic bath. The 
Hubbard model is one such example [I] .  Sluggish electrons in quenched disordered systems 
(dirty alloys) interacting with a phonon bath is another [2]. Several authors have treated the 
motion of excitons coupled to heat baths using ideas that originated in the HakenStrobl 
model [3-5] i n  which the fermion degrees of freedom are treated quantum mechanically, 
while the evolution of the bath is treated in a stochastic manner. There are several adiabatic 
or static approximations that ignore the dynamics of the bath, replacing its effect by a static 
quenched disorder in the fermion potential. This approximation would be valid whenever the 
time scales associated with the bath evolution are much larger than that of the electrons that 
interact with it. In this category lie the alloy analogy CPA solutions of the Hubbard model [6] 
and the adiabatic approximation for the electron-phonon coupled system [7]. Difficulties 
with these approximations arise in many interesting situations where the bath dynamics 
plays an important role, such as the presence of a Fermi-liquid-non-Fermi-Uquid transition 
in half-filled Hubbard models for the U + 0 limit [S, 91 and a low-temperature anomalous 
temperature coefficient of resistivity in Mooij alloys [IO]. The next stage of sophistication 
assumes the stochastic evolution of the bath to be Markovian [ I l l .  However, memory 
effects, absent in the Markovian process, may also play a crucial role in many situations, 
for example, if we want to bridge between wave-like propagation and diffusive propagation 
in such systems [12]. The aim of this paper is to set up a generalized methodology to treat 
the fermions in contact with non-Markovian baths within the framework of the augmented 
space formalism (ASF) introduced by one of us [13]. 

The Hamiltonian of a fermion moving on a lattice in contact with a time fluctuating 
stochastic bath may be written as follows: 

H = CCfijc:cj + V ( ( U " ( 0 ) ) .  (1) 
i j  
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The potential seen by the fermion because of the stochastic bath depends on time 
fluctuating bazh variables u,(f). In the simplest model, each lattice point has a bath variable 
attached to it, and the Hamiltonian may be written as 

i j  

The first term represents the Hamiltonian seen by the fermion in absence of the bath 
and may be designated as Ho. If the vector of stochastic variables v(z) = [ u i ( t ) )  takes on 
values <(s) as time evolves, then the space spanned by <(r)  is called the sfate space of 
the bath. This is in exact analogy to the sfale space for quenched disorder as described in 
the ASF. A history of the bath is  a set of vectors { t ( r j ) )  0 < zr < 52 < . . . < sa = I and 
the set constitutes a path or curve in the state space. Note that the fermion creation and 
annihilation operators cj and ci are operators on a Hilbert space H spanning the lattice, 
whereas the potentials ut operate on the state space @ such that <I$) = .$IQ) where I$) are 
the eigenvectors of the bath Hamiltonian Hb which span the state space Q. 

The evolution operator, averaged over different histories of the bath, may be written as 

Here r parametrizes a point on a particular hisfov of the bath from r = 0 to I. and 
P, [u~(T)] is a weight function for i-site histones. As expressed in (3) (U@)) is the mean 
evolution operator averaged over all time histories of the bath. Our aim would be to obtain 
an expression for this object. Notice that the Laplace transform of the averaged evolution 
operator is the averaged Green operator or propagator of the electron in interaction with the 
bath. 

Any static or adiabatic approximation at this point suppresses the time dependence 
of the bath variables [ u i ) ,  leading to a frozen random probability distribution of the site 
energies seen by the electron. Our main aim would be to keep the intrinsic dynamics of 
the bath variables intact. In particular we shall concentrate on the non-Markovian bath 
evolution. The Markovian approximation washes out all of the reversible behdviour of the 
bath, which may be of importance in the exact nature of the transport of the fermion. For 
example, as mentioned earlier, when the electron Hamiltonian has intrinsic static disorder, 
so that near the Fermi energy the electrons are sluggish. the non-Markovian nature of the 
bath evolution is essential to bridge the gap between wave-like and diffusive nature of the 
electron propagation i n  contact with the phonon bath [12]. 

As a first step, we shall set up the generalized Master equation for the evolution 
probability of the bath variables. We shall follow the procedure of Zwanzig [14] and 
Nakajima [15] starting from the definition of the evolution probability as the diagonal 
element of the density matrix for the bath in its state space @. 

P E ?  0 = ( t I P l t )  
and using the equation of motion in the bath: 

iaplat = [H~, pi = ~p 

C. being the Liouville operator, we obtain 

ap(C,t)/at = ~ ' d s J d 5 ' [ W ( 5 , 5 ' , i - - ) p ( 5 ' . ~ ) -  W(5',5,f-s)p($,s)]  + 1 ( 5 , f )  (4) 
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where 

w(t ,  t', t )  = - [?Lev (-it(l - P ) L ) ] ~ ~ , ~ ~  

I ( { ,  t) = i [pLexp[-it(l - P)L] (I  - P ) ~ ( o ) ] ~ ~  

Here the projection operator P acts on any operator to project out the diagonal matrix 
element in the representation based on the states of 0, Since p(0) is usually itself diagonal 
in this basis the inhomogeneous term Z ( x , t )  usually vanishes. The function W(5 ,  r,  t )  
is the generalized transition matrix element of the evolution Master equation. For a 
Markovian process the transitions have no memory, so that W ( t , t ' , t )  = F(C,<')J(t)  
and our generalized Master equation reduces to the well known Pauli Master equation 

a p ( t ,  t ) / a t  = J d t i [ w ( t ,  ~ ~ t r ,  t )  - wt', m ( t ,  t ) ]  . (5 )  

The Chapman-Kolmogorov equation for the Markovian bath is derived starting from the 
Pauli Master equation. However, in order to take into account reversible effects we shall start 
from the generalized version (4) and derive a generalized Chapman-Kolmogorov equation 
for the evolution probability 

Here &(t - s )  is the generalized Fokker-Planck operator on the state space 0. For 
a special case, we may assume that the transitions do not depend on the states in Q. In 
this case the generalized Fokker-Planck operator decouples into the ordinary Fokker-Planck 
operator and a memoryyfrcnction + ( t  - s), which is independent of the state variables. The 
Chapman-Kolmogorov equation then becomes 

where a, = lg'C'"F(t,r). The a] can be thought of as the local velocity and a2 the 
local difision constant. 

If we extract the Fokker-Planck operator fi = [-(a/ag)al(c) + i (a2 /a t2)az([ )] ,  then 
the generalized Chapman-Kolmogorov equation reduces to 

Note that in several situations this partitioning of the generalized Fokker-Planck operator 
into state variables and time may not obtain. For example, if the bath is a phonon bath, 
then the state space consists of the space spanned by harmonic oscillator states In) and the 
generalized Fokker-Planck operator becomes ( I  /t)(d/dt)j:-,(ZVr/R) [16]. 

The Fokker-Planck operator has a zero eigenvalue. The corresponding eigenstate is 
the stationary solution of the generalized Chapman-Kolmogorov equation. Let p * ( t )  be a 
stationary solution. We note that the Fokker-Planck operator is not self-adjoint; therefore, 
we have to define an inner product between two functions in the state space 0 as follows: 

(4 0 r )  = 1 I d 5  d5' q( t )Q( t  - t ' ) r ( t ' )  
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where Q( t  - 5') = (l/p*(s))S(t - 5') is the kernel of the inner product. 
We shall now employ the augmented space theorem of Mookerjee [21 and Paquet and 

Leroux-Hugon [ 11 to evaluate the averaged evolution operator. We shall first define a 
condirionally aseraged evolution operator U([. { I ,  t )  such that the system history begins at 
a state e' at f = 0 and evolves to a state 6 at f. It is easy to notice that V ( ( , t ' t )  is the 
representation of an operator fi acting on the state space @. The fully averaged evolution 
operator is summed over all histories that end up in different final states t'. However, each 
of these histories could have originated from any one of the initial states t ,  so 

I Dasgupta and A Mookerjee 

Thus, from the definition of the inner product 

U(?) = (p* 0 irp') (9) 

The history average of the evolution operator has been reduced to a matrix element of 
an operator fi between the stationary states in the state space @ of the bath. This is the 
augmented space theorem, We have augmented the Hilbert space spanned by the lattice 7i 
by the state space @. Our evolution operators are operators on the augmented space 7i@ @ 
and history averages reduce simply to taking specific matrix elements on this augmented 
space. 

The next step involves noting that the electron system in contact with a bath evolves in 
two distinct ways: part of its evolution is governed by the Schrodinger equation and part 
by the generalized Chapman-Kolmogorov equation. Thus Hamiltonian HO is the generator 
of infinitesimal time translations for the quantum evolution, while the generalized Fokker- 
Planck operator plays the same role for the stochastic evolution. We obtain 

F,(t - s) are operators (one for each of the bath variables u i )  on the state space CJ whose 
representations are our generalized Fokker-Planck operators Fi (e, { I ,  r - s). 

Define G(z) = (I/rA)S"~exp(izt/h)dt,  the time evolution operator. Taking the Laplace 
transform of both sides of (8) we obtain 

where ki(z) = 1; f(s)exp(izs/h) ds. 
In other words, the propagator, averaged over different histories of the bath, is given by 

the matrix element of the resolvent of an effective Hamiltonian operator fi in the augmented 
space 7i @ @: 

where 

f ? = f i o + 3 & z )  
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2. Illustrative examples 

We shall illustrate the formalism introduced in the previous section by specific examples. 
We shall first take the case of an electron interacting with an Ehrenfest bath. In this model 
the local velocities and diffusion constants are written in terms of a single lifetime ro: 
01, = -@/TO) and a2 = (2/ro). The Markovian approximation of this problem has already 
been illustrated in an earlier article [I  I ] .  The Markovian memory function is a delta function 
in time. In this model we have shown that the state space is spanned by the set of oscillator 
eigenfunctions 

yL(x) = (2nn!n ) -”*~ , (x /~ )  exp(-x2/2) 

In the representation in which the Fokker-Planck operator is diagonal, the interaction 
potential part of the electron Hamiltonian is tridiagonal with diagonal matrix elements U. 

= 0, and off-diagonal matrix elements b, = n. This was appropriate for a static Gaussian 
distribution of the potentials. In the static or adiabatic approximation this is the result of 
Sumi [7]. 

Let us now go beyond the Markovian approximation by introducing generalizations to 
the memory function. Kenkre and Knox 1121 and our earlier work [ I l l  have shown that 
the Markovian memory is appropriate to a diffusive evolution of the bath. However, if we 
take the telegrapher’s equation [ 171 as the basis of our bath evolution: 

then in the limit of c much larger than a2 we recover the Markovian diffusive behaviour 
with a delta function memory, whereas, in the opposite limit, the evolution equation of the 
bath is wave like with long memory, and the memory function is a theta function in time 
with the evolution at a time t depending upon all the earlier’ times. Kenkre and Knox have 
shown that the generalized memory functions of the telegraphers equation has the form 
@(t)  = cexp(-cr/a2). It is easy to check that this function smoothly interpolates between 
the theta and delta function forms. 

Incorporating this in our formalism in equation ( l l ) ,  the effective augmented space 
Hamiltonian becomes 

In order to calculate the propagator of the electron, we may carry out the dynamical 
CPA approximation proposed by one of us [I 11. The idea behind this approximation can 
be expressed either in terms of waNts on the augmented space or em scattering diagrams. 
The former is a graphical representation of the renormalized perturbation expansion for 
the propagator. The path counting method has been described in detail by Mookerjee [lS] 
and Haydock [19]. The CPA involves neglecting the contributions of all paths that connect 
more than one site and their configurations. Paquet and Leroux-Hugon [ I ]  have shown that 
this is identical to neglecting crossed or correlated scattering diagrams involving more than 
one site. This is exactly what the single-site CPA should mean. Within this approximation 
Mookerjee [ 1 I ]  has shown that the cardimlipdependent self-energy is given by 

C, = -iqhw(z) + S, 
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Figure 1. The density of states 
(shown ooly for positive energies) 
for an electron interacting with a 
Markovian bath (solid curve) and 
a non-Markovian bath with long 
memory (dashed culve). 

Since it is simple to show that ,Eq, = 0, we can stan our iterative calculation 
with a q = Q so chosen that we remain within a prescribed accuracy when we increase 
Q. We choose an unperturbed density as a semicircular density in the range -2 4 E 4 2. 
We choose such a featureless density for the specific reason that we want to identify only 
structures introduced by the non-Markovian nature of the bath. 

Figure 1 (solid curve) shows half the density of states (the density is symmetric around 
the y-axis at E = 0) for a c/o12 ratio of 10. This approximates the Markovian bath very well, 
and our results agree closely with the earlier calculations by Paquet and Leroux-Hugon [l] 
and Mookerjee 121. The dashed curve is for the opposite limit c/@? ratio of 0.1. This should 
extrapolate to the limit of a very long memory bath, whose dynamics is governed by a wave 
equation. Note that the self-energy introduced by the dynamics in the Markovian regime 
is totally imaginary, leading to a lifetime effect. However, in the opposite regime, the 
dynamics-induced self-energy has a real part, which leads to a shift in the energy spectrum. 
Moreover, the real part has a strong energy dependence. This leads to considerable structure 
in the density of states, as shown in figure 1. If we slowly decrease the c/o11 ratio from 10 
down to 0.1, we can see the growth of the structures from the simple tailing in the lifetime 
effect in the Markovian regime. 

Next we have introduced an oscillatory part to the memory function. This is motivated 
by the fact that the memory function of a phonon bath has an oscillatory character specific 
to the Bessel function mentioned earlier. However, a full accurate study of the phonon 
bath would require the memory to depend on the bath states as well. We have modelled 
the situation by a cosine modulation of the telegrapher equation memory. Note that it is 
the large-c/mz regime that models the phonon bath. Figure 2 shows the modification of 
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Figure 2. The densiry of states 
for an electron interacting with a 
Markovian bath (solid curve) and 
a bath with oscillatory decaying 
memory iunction (dashed curve). 

Figure 3. The den& of states 
of an electron interacting with a 
non-Markovian bath with long-time 
memory (solid curve) and long- 
time memory modulated with an 
oscillalory function (dashed curve). 

Figure 4. The memory functions 
considered in the earlier figures: 
a fast decaying almost M x k o v b  
bath (solid curve). a long-time 
oscillatory memory (dashed curve) 
and a memory intermediate between 
Ihe two (dotted curve) (for a ratio 
c/o12 - I) .  
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the purely Markovian memory result (bold curve) by the cosine modulation (dashed curve). 
In this regime the effect is not large. The conjecture was earlier made by Mookejee [ I  11 
when he argued that the approximation of the phonon bath by a Markovian memory was 
qualitatively not bad. However, the effect of cosine modulation on the structures in the 
long-time memory regime is considerable. The structures move outwards, while the low- 
energy regime is also modified. Figure 4 shows the different cosine modulated memory 
functions used: Markovian, diffusion like (full curve), long-time wave like (dashed curve) 
and an intermediate regime (dotted curve). 

The aim of this illustration is not only to demonstrate how to work with non-Markovian 
baths within the augmented space methodology, but also to illusaate in a few simple 
examples that long-time memory may have considerable effect on the density of states, 
which may reflect for example line shapes in resonance experiments. It is our claim that 
the methodology proposed, coupled with methods for obtaining the memory functions in 
specific cases, will form a significant improvement over the Markovian treatments tried 
earlier. 
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